Candida auris: A globally emerging multidrug-resistant yeast

Mycotic Diseases Branch
DFWED Friday Seminar
August 26, 2016

First report of C. auris from Japan in 2009

Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital

Kazun Satoh1,2, Koshibi Yamauchi2,3, Yoshib Hosum4,5, Yoshi Nishiyama6, Katsuhisa Uchida7 and Hideki Yamaguchi2

1Tokyo University Institute of Medical Mycology, 318-1 Chiba, Chiba, 180-8696, Japan, Health Sciences Foundation,
2Jpn Microbial Mycology Research Center, Chiba, 180-8696, Japan, and
3Yokohama Research Center, Graduate School of Medicine and Faculty of Medicine, Yokohama City University, Chiba 219-1292, Japan.

South Korea 2009 and 2011

- 2009 report on 15 ear infection in patients at 5 hospitals
 • Isolates from 2004–2006
- 2011 report of 3 C. auris bloodstream infections in 1 hospital
 • Isolates from 1996 and 2009
 • First report of invasive C. auris infection

Kim N et al, CID 2009; Lee W et al, JCM 2011

India 2011

- 2011 report of 12 bloodstream infections from 2 Delhi hospitals
 • Isolates collected 2009–2011
- 2015 report candidemia in 19 Indian ICUs
 • Isolates collected 2011–2012

Chowdhary A et al, EID 2013

C. auris basics

- Can cause invasive infections, predominantly fungemia
- Is often multidrug resistant (MDR)
- Cannot distinguish C. auris from other Candida species with biochemical tests and most conventional diagnostics

C. auris basics
Pakistan 2014–2015

- 2014–2015 outbreak ~30 cases at a single hospital
- Initially identified as *Saccharomyces cerevisiae*
- Pakistan requested CDC assistance with outbreak in 2015
- Launched CDC’s international *C. auris* work

Global emergence during 2009–2015

International *C. auris* response

- Formed an international *C. auris* collaboration
 - Pakistan
 - India
 - South Africa
 - Venezuela
 - Colombia
- Collect epidemiologic data
- Sequence *C. auris* isolates
- Assess resistance

C. auris early epidemiology

- Patients of all age ranges (NICU infants → elderly)
- Similar risk factors as for other *Candida* spp.
 - Diabetes
 - Antibiotic use
 - Recent surgery
 - Presence of a central venous catheter
- May occur in conjunction with other *Candida* spp
- Patients on antifungal treatment when *C. auris* isolated
- Median time from admission to infections: 17 days
- Mortality ~60%:
 - 100% in Venezuela in NICU infants
Whole genome sequencing (WGS)

- 47 isolates from 5 countries
- 47 HiSeq + 2 PacBio + 2 genomes from NCBI
- PacBio reference: 20 contigs, N50: 1 Mbp
- Average sequencing depth with Illumina: 235X (50-300X)
- 96-99% genome coverage
- Assembled genome: 12.5 Mbp

WGS relationships among 47 isolates from 4 countries

- WGS relationships among Indian/Pakistani strains
 - ≤5 SNPs
 - <2 SNPs

WGS results

- Profound phylogeographic structure
- Huge genetic differences among geographic clades
- Possible cryptic species
- Very high clonality within the geographic clades
- Recent independent emergence in different places
Antifungal susceptibility

- 54 patient isolates from Pakistan, India, SA, Venezuela

<table>
<thead>
<tr>
<th>Antifungal</th>
<th>MIC value in µg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluconazole</td>
<td>0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256</td>
</tr>
<tr>
<td>Voriconazole</td>
<td>1 1 1 1 1 1 2 7 4 13 28</td>
</tr>
<tr>
<td>Itraconazole</td>
<td>3 4 9 28 10</td>
</tr>
<tr>
<td>Caspofungin</td>
<td>4 1 5 19 17 6 2</td>
</tr>
<tr>
<td>Anidulafungin</td>
<td>1 9 22 19 1 1 1</td>
</tr>
<tr>
<td>Micafungin</td>
<td>2 14 17 9 6 4 2</td>
</tr>
<tr>
<td>Posaconazole</td>
<td>28 5 28 9 6 4 2</td>
</tr>
<tr>
<td>Echinocandins</td>
<td>17 18 15 4</td>
</tr>
<tr>
<td>Fluconazole B</td>
<td>17 18 15 4</td>
</tr>
</tbody>
</table>

Key:
- 93% resistant to fluconazole
- 54% resistant to voriconazole
- 35% resistant to amphotericin B
- 7% resistant to echinocandins
- 41% MDR isolates
- 4% resistant to all three major antifungal classes
UK 2015–2016 outbreak

- An adult critical care unit in the UK with >40 patients either colonized or infected with C. auris
 - ~20% of these patients had candidemia
- Outbreak difficult to control despite intensive IC efforts:
 - Regular patient screening in the ICU
 - Cohorting colonized patients
 - Environmental decontamination
 - Ward closure
- Transmission from environmental sources
 - Preliminary data suggests healthcare workers not major carriers
 - Hospital rooms remain positive despite cleaning

Why are we concerned about C. auris?

- Is multi-drug resistant
 - Some isolates resistant to all three major antifungal classes
- Can be misidentified
 - Usually misidentified as other Candida spp or Saccharomyces, when using biochemical methods (API strips or VITEK-2)
 - MALDI-TOF can detect C. auris
- Causes outbreaks in healthcare settings
 - Unlike other Candida spp., seems to colonize healthcare environments and skin
 - Major infection control challenges

Is it in the United States?

- EIP Candidemia Surveillance Program
 - No C. auris
- SENTRY system (Private collection funded by pharma)
 - >6000 North American isolates collected from the US since 2004
 - 1 C. auris isolate from 2013

CDC issued a clinical alert to healthcare facilities – June 2016
Public Health England released an alert on the same day

Public Health Agency of Canada also released an alert in July 2016

PHAC Communication Re: Emerging global HAI-AMR issue – *Candida auris*

PHAC has recently learned of a public health alert from US CDC in relation to the global emergence of invasive infections caused by the Multidrug-Resistant yeast organism, *Candida auris*.

C. auris in the United States (n=7)

- 5 bloodstream infections, 1 urine, 1 external ear
- Ages: 44-89 years
- Underlying medical conditions:
 - Leukemia
 - Bone marrow transplant
 - Short gut requiring total parenteral nutrition
 - High-dose steroids
- Outcomes:
 - 3 died
 - 3 alive
 - 1 unknown

Antifungal susceptibility in the U.S.

- Six of seven isolates resistant to fluconazole
- One of seven isolates resistant to amphotericin B
 - Pt from the United Arab Emirates
- No known echinocandin resistance
Is there evidence of transmission in the U.S.?

- Some cases are epi-linked
 - two patients also shared the same long-term acute care hospital
- 1 patient with *C. auris* BSI 3 months earlier was colonized with *C. auris* in groin, axilla, nares, rectum
- Room of patient with *C. auris* colonization + for *C. auris* on mattress and window sill

KPC-producing CRE in the United States

- 2001
- August 2016
Limitations and Challenges

- "Buy in" from facilities and health departments
 - Earlier intervention is better than later?
- Resources for investigation
 - State AR funding
 - Regional labs
- Does it work?
 - Slow spread vs. eliminate
 - Future interventions
 - Manipulating the microbiome/decolonization

mcr-1

- 4 U.S. human cases identified
 - 2 retrospective (2014 and early 2015)
 - 2 "current"
- PA – extensive long-term healthcare contact
 - Screening cultures collected from patient, household contacts, HCP, PPS
 - All negative but patient, she was negative at 3 months
- CT – child, no inpatient healthcare exposure, recent travel
 - Screening culture of environment and household contacts

Response plan for C. auris cases in the U.S.

- Requested health facilities and labs to report of all C. auris cases CDC and state and local health departments
- Case finding efforts (clinical alert, EIP surveillance, ARLN)
- Immediate investigation of all past and current cases
 - Microbiology record review for other cases and possible cases
 - Identify epi links between cases
 - Assess colonization of case-patient
 - Environmental swabs
 - Point prevalence surveys of colonization in shared rooms/wards
 - Swabs of household contacts
Infection Control Recommendations

- Standard and Contact Precautions
- Daily and terminal cleans to reduce environmental burden of organisms with EPA registered disinfectant
- Regional notification to other facilities the patient may be admitted
- Working with EPA and FDA to understand what works for disinfection

International Collaborations: Colombia

- C. auris in Colombia
 - 5 cities with reported cases
 - 5-24 cases at each site
 - Team in Colombia now
 - Case-case Colombia now
 - Environmental investigation
 - Point prevalence survey of colonization

WGS of Colombian strains

Venezuela + Colombia

Japan + Korea

India + Pakistan

Antifungal susceptibilities

<table>
<thead>
<tr>
<th>Antifungal</th>
<th>MIC values (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluconazole</td>
<td>0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256</td>
</tr>
<tr>
<td>Voriconazole</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Itraconazole</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Posaconazole</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Caspofungin</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Anidulafungin</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Micafungin</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Flucytosine</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Amphotericin B</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
</tbody>
</table>

(Colombia, Korea, US)

30 isolates
India Collaboration

- India
 - 5-8% of all candidemia in Indian ICUs due to C. auris
 - Some centers reporting 40% of candidemia now caused by C. auris
 - Team in India now to start work on C. auris

Why are we seeing so much resistance?

- Not typical fluconazole resistance
 - May not have intrinsic resistance to fluconazole
- Ability to develop resistance may be high
 - Not plasmids, mechanisms unknown?
- Seems to have the ability to adapt quickly
- Emerging on several continents all at the same time
 - Different genes confer resistance
 - What role does antifungal use

Globally emerging multi-drug resistant organism but this time it’s a FUNGUS

- Well-established in some parts of the world
 - Working to understand the full extent of its prevalence and the true burden if disease
 - New modes of transmission are more clear but still many questions
 - Control measures need to be identified and tested
 - Continue to monitor situation in the UK

- Emergence in the US is very recent, but concerning
 - To date only isolated cases, none are triple MDR
 - State and local partners beginning to work with hospitals to monitor emergence, understand transmission and identify and implement control measures